
M E A S U R E M E N T  OF T H E  T H E R M A L  D I F F U S I V I T Y  

OF  M E T A L S  ON T H E  T E M P E R A T U R E  I N T E R V A L  1 1 0 0 - 2 5 0 0 ~  

A.  A.  E m e l f y a n o v ,  Oo A. K r a e v ,  A .  A.  S t e l T m a k h ,  
a n d  R. A.  F o m i n  

A method of measur ing  the thermal  diffusivity of metals  on the tempera ture  interval 1100- 
2500~ is described. Values of the thermal  diffusivity of tantalum, molybdenum, niobium, 
vanadium, and cobalt a re  presented.  

In [1] a description was given of a method of measur ing the thermal  diffusivity of metals  at high t em-  
peratures~ In this case  it is difficult to measure  the thermal  diffusivity at t empera tures  less than 1700~ 
since as the tempera ture  of the specimen decreases  the "signal/noise ')  rat io at the output of the selective 
amplif ier  decreases .  In order  to improve the "s ignal /noise"  ra t io  it is necessa ry  to reduce the amplifier  
pass  band; moreover ,  it is desirable to increase  the tempera ture  fluctuations AT. The pass  band is r e -  
duced by applying the synchronous detection principle.  Grea te r  tempera ture  fluctuations AT with a s imul -  
taneous decrease  in level T O can be achieved by increasing the diameter  of the specimen and the distance 
between the anode and the cathode. 

As seen f rom Fig. 1, the mutual radiating surface of the anode a and cathode c is g rea te r  in the f i rs t  
case  (D 2 > D 1) than in the second (D 2 = D1, where D 1 and D~ are  the d iameters  of the cathode and the anode, 
respectively)  [2]. Given equality of the heat flows from cathode to anode, the anode tempera ture  will be 
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lower in the f i r s t  case  than in the second. In o rde r  for  the anode t e m p e r a t u r e  to be the s ame  in both cases ,  
it is n e c e s s a r y  in the f i r s t  case  to supply the anode with additional power  Q. This can be obtained by in-  
c reas ing  the e lec t r i c  power,  which leads to an inc rease  in the spec imen  t e m p e r a t u r e  fluctuations. 

Thus,  to m e a s u r e  the t he rm a l  diffusivity of me ta l s  at t e m p e r a t u r e s  below 1700~ it is neces sa ry  to 
i nc r ea se  the anode-cathode dis tance,  the acce le ra t ing  voltage,  and the spec imen  d iamete r .  In this case  all 
the theore t ica l  p r e m i s e s  and solutions of [1] a r e  p re se rved .  

The exper imenta l  setup (Fig. 2) d i f fers  somewhat  f rom that  desc r ibed  in [1]. To reduce  the pass  band 
and inc rea se  the s igna l /no i se  ra t io  a synchronous detector  SD is used as phase  null indicator.  The phase  is 
r e g i s t e r e d  by an e lec t ronic  p h a s e m e t e r  EP; a modula tor  M is incorpora ted  in the initial phase  shift  c o m -  
pensat ion c i rcui t ,  which employs  a K e r r  cell  KC. 

The t h e r m a l  diffusivity is m e a s u r e d  as follows. The m a s t e r  osc i l l a to r  MO (Fig. 2) is adjusted to the 
n e c e s s a r y  f requency value; the spec imen  O is heated to the r equ i r ed  t empe ra tu r e .  By means  of a ro ta tab le  
m i r r o r ,  light f r o m  the K e r r  cell  is d i rec ted  at the sensor  S and the initial phase  shift introduced by the 
m e a s u r i n g  c i rcu i t  is compensated.  Compensat ion is achieved by vary ing  the tuning of the se lec t ive  a m p l i -  
f ier  A to obtain zero  at the synchronous detector .  At the s a m e  t ime,  the t e m p e r a t u r e  of the spec imen is 
m e a s u r e d  with a OPPIR-017 optical  p y r o m e t e r .  Then by means  of a ro ta tab le  p r i s m  the signal f rom the 
spec imen  is t r ansmi t t ed  through the optical  s y s t e m  to the sensor .  A value of the spec imen  signal a m p l i -  
tude equal to the compensa t ion  ampli tude is es tab l i shed  by regulat ing the d iaphragm of the optical  sys tem.  
Z e r o s  at the synchronous detec tor  a r e  obtained by means  of the phase  shif ter  P. The phase  shift i n t ro -  
duced by the spec imen  is r e g i s t e r e d  by a F2-1 ins t rument .  The f requency is m e a s u r e d  with a PST-100 
sca le r .  

This method was used to m e a s u r e  the t he rma l  diffusivity of tanta lum (containing about 99.3% of the 
bas ic  metal) ,  molybdenum (grade MCh, total  impur i t i e s  not exceeding 0.08%), niobium (about 99.9% basic  
metal ) ,  vanadium (exper imenta l  batch f rom the Exper imenta l  Chemico-Meta l lu rg ica l  Plant  GIREDMETA), 
and cobalt  (her l ess  than 99.9% basic  metal) .  The spec imens  invest igated were  0.2-0.8 m m  thick and 10-20 
m m  in diameter~ The e lec t ron  flux modulat ion frequency va r i ed  between 20 and 600 Hz, the acce le ra t ing  
voltage supplied by the h igh-vol tage  r e c t i f i e r  H-VR (Fig. 2) f rom 500 to 3000 V. 

In Fig. 3 the t he rm a l  diffusivi t ies  of tantalum, molybdenum, and niobium a re  shown as functions of 
t e m p e r a t u r e  with al lowance for  the co r rec t ion  for  t he rma l  expansion (the exper imenta l  points a r e  r e p r e -  
sented by c i rc les ,  c r o s s e s ,  and t r iangles ,  r e spec t ive ly ) .  The analogous re la t ions  for  vanadium (circles) 
and cobal t  (crosses)  a r e  shown in Fig. 4. 

To de te rmine  the t rue  t e m p e r a t u r e  we used published data on the emiss iv i ty  of tantalum, molybdenum, 
niobium [3, 4], and vanadium [5]~ Since there  a r e  as yet no re l i ab le  data on the emiss iv i ty  of cobalt,  we 
have plotted the t he rm a l  diffusivity of cobalt  as a function of the br igh tness  t e m p e r a t u r e  at a wavelength of 
0.655 ~. 
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